Prof. Ralph Müller

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Spatial Proteomics of Mechanically-Driven Bone Healing

Bone healing is profoundly influenced by its mechanical environment. Advances in spatial proteomics now allow us to map protein expression within intact tissue and directly relate it to local biomechanical cues. The Laboratory for Bone Biomechanics is developing a new line of research within spatial mechanomics (DOI: 10.1126/sciadv.adp8496), integrating spatially resolved proteomic data with in silico models of the mechanical environment at fracture sites. This approach enables us to investigate, at cellular resolution, how mechanical forces shape protein-level signalling during bone repair.

Keywords

Bone, Mechanobiology, Spatial Proteomics, Protein Expression, Aging, Sex Differences, Mechanical Loading, Finite Element Modelling, Image Analysis

Labels

Semester Project , Internship , Bachelor Thesis , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-11-23 , Earliest start: 2025-12-01 , Latest end: 2026-12-31

Organization Müller Group / Laboratory for Bone Biomechanics

Hosts Mathavan Neashan

Topics Medical and Health Sciences , Engineering and Technology , Biology

Exploring the 3D Mineralization Behavior in Material-Induced Osteoinduction Through a Multiscale Micro-CT Imaging Approach

The project aims at investigating material-induced osteoinduction using the available mouse model of orthotopic or ectopic bone graft substitute (BGS) application. Through the 3D-3D registration of ex vivo and in vivo multiscale micro-CT images, crucial 3D mineralization behavior of the BGS can be investigated.

Keywords

Femur, Bone Graft Substitute, Critical Size Defect, Osteoinduction, in vivo, micro-CT, 3D-3D Image Registration, Image Analysis, Image Processing, Python, Computational

Labels

Semester Project , Bachelor Thesis , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-09-08 , Earliest start: 2025-09-22 , Latest end: 2026-07-31

Organization Müller Group / Laboratory for Bone Biomechanics

Hosts Lindenmann Sara

Topics Medical and Health Sciences , Engineering and Technology

Exploring the Mechanoregulation of Bone Regeneration

In over 100 years, the remarkable ability of bone to adapt to its mechanical environment has been a source of scientific fascination. Bone regeneration has been shown to be highly dependent on the mechanical environment at the fracture site. It has been demonstrated that mechanical stimuli can either accelerate or impede regeneration. Despite the fundamental importance of the mechanical environment in influencing bone regeneration, the molecular mechanisms underlying this phenomenon are complex and poorly understood.

Keywords

Bone, Mechanobiology, Spatial transcriptomics, Gene expression, Finite element modelling, Image processing

Labels

Semester Project , Internship , Bachelor Thesis , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-08-21 , Earliest start: 2024-11-01 , Latest end: 2026-08-31

Organization Müller Group / Laboratory for Bone Biomechanics

Hosts Mathavan Neashan

Topics Medical and Health Sciences , Engineering and Technology

JavaScript has been disabled in your browser